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COMPOSITION OF PROBABILITY LAWS

A non-negative and non-decreasing function F continuous on the left on (-co0,+to) is said to be a
probability law if lim F(x)=1 and lim F(x)=0 and a composition of two probability laws F; and F; is defined

by the equality F(s)=(F;#,)(s):= T F, (x-8)dFy(x). If for x>0 we put We(X)=1-F(x)+F(—x) then Wgx)0 as

X—>+ow0. The article studies the relationship between a decreasing of the function W . . and a decreasing of
the functions W . y and W . ( in terms of generalized orders and convergence classes. For this purpose, by

L we denote a class of continuous nonnegative on (-0, +0) functions a such that a.(x)=o0(Xo)>0 for x<x, and
a(X) T+ as xo<sx—+o0, We say that ael’, if a.eL and a((1+o(1))X)=(1+o(1))a(X) as x—+ow. Finally, a el
if ael and a(cx)=(1+0(1))a(X) as X—»+owo for each fixed c €(0,+), i.e. a is slowly increasing function.
Putting Re= lim ((1/X)In(1/W(x)), two cases Rek=+c0 and Rg<+oo are considered separately.

For Re=+co the following characteristic ©,4[F/= lim a)/B((1/x)-In(1/We(X))) is introduced and it is

proved that if aelg and fe L° then o, 4[F1#F,/<smax{ o 4[Fi] ®.4[F,/} and, moreover, if
o o p[Fo/<® 4[F1] then o 4[FiF /=0, 4[Fi] If O<Rge=R<+c and @Wp(x)em:ﬂo we put
o) [Fj:@aa)/ﬁ(x/mvvp(x)-e”ﬁ). It is proved that if R, =R, =Re(0,+x), aclq Bely alxa
Yepix)=(1+o(1)cf(x) and o(x/f(cax)=(1+o(l)a(x) as x—>+w for each ce(0;+x) then
ol [F1#, Jsmax{ o) [F1/, o) [F2/} and, moreover, if o) [F2] <o) [Fi/then o) [F1# /= ol [F1/
The connection between the decrease of the function W .. . . (x) and the decrease of the functions W .. (x)
and W . (x) also is studied in terms of classes of convergence. Under some conditions on the functions a, 8

and WF, (X) it is proved, for example, that if Re=+o0 and Ioc' (x)ﬁl((l/x)‘ln(l/WFj (x)))dx<+owo for j=1,2,

X0

where ﬂ10()=]3dr/ﬂ(r), then T o' ()P1((1/x) In(1/W . (x)))dx<++o0.

Key words: probability law, composition of probability laws, generalized order, convergence class,
decrease of function.

Formulation of the problem. For x>0 and
probability laws F, let

J
We (x)=1-F,(x)+F,(-x) (j=12) In terms
of generalized orders and convergence classes
connections between the decrease of W, (x) and
W (x) are established,

F(s)= (R w B)(s) = [ B (x-)dF (x).

Analysis of recent research and publications. A
non-decreasing function F continuous on the left on

where
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(—o0,0)is said [5, p. 10] to be a probability law if
lim F(x)=1and lim F(x)=0.

If for x>0 we put W, (x)=1-F(x)+F(-x)
then W, (x)4 0 as x —+o0. A composition of two

probability laws F, and F, is defined [5, p. 10] by the
equality F(s) = (F * £,)(s) = | F (x—5)dF, (x).

Formulation of the prob_lem. The aim of our
note is research of connections between the decrease
of function W,,,. and the decrease of functions W,
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and W, in terms of generalized orders and

convergence classes.

Statement of basic materials. 1. Connections in
terms  of  generalized orders. We  put
1

Wi (x)
between two cases R, =+ and R, <+, and for
the research of the decrease of the function W, we
will use generalized orders. With this purpose we
denote by L a class of positive continuous functions
o on (—o,0) such that o(x)=a(x) for
—0<x<x, and o(x)T+o as x, <x —+o. We
say that ael’ if and
a((] +o(1))x) =(1+o(1))a(x) as x —+oo; further,
ael,, if ael and o(cx)=(1+o(1))a(x) as
x —>+0 for any ce(0,+x), i. e. o is slowly
increasing. It easy tosee L, c L.

We start from the case R, = +wo. For ae L, Be L
and probability law we define

R, = lim L 1n and we will distinguish

x—+0 X

o€l

o [P )
’ X—>+0 1 1
Bl —In
x We(x)
Theorem 1. If aelL,and Bel’ then
0,5 [F * K] <max{o,,[F].0,,[H]}, and
moreover if 0,5 [F] <o, F] then

o, [F*E]=0,,[F]

Proof. Let ¢(z)=[e™dF(x) be the
characteristic function of pric\)bability law F defined
[5, p. 12] onreal z. If ¢ has an analytic continuation
on the disk D, ={z:]z] < R}, 0 < R<+wo, then we
call ¢ an analytic in D, characteristic function of
the law F _Further we always assume that D, is the
maximal disk of the analicity of ¢ It is known
[5, p. 37-38] that ¢ is an analytic in D,
characteristic function of the law F if and only if

Wi (x)= O(e”") as 0<x—+o for every
.1 1 .
r €[0; R). Hence XIL—TJIH AL =R,i.e. R=R,
and if R, = +oothen ¢ is an entire function.
Let M (r,¢) = max {|(p(x)| D e = r} and
— 1 In M (r, q))}
Pos @] = lim o oael,Be Lbe
’B[ ] r—+w B(r) [ r ,

a generalized order of the function ¢. In [3] is
proved that if either e L, and pe L’ or ae I’ and

Be L, then Pup [o] = ©,p [F].

On the other hand [5, p. 13], if F = F = F, then
for the corresponding characteristic functions the
equality o(z)= ¢, (z)- ¢, (z) istrue.

Therefore, we need to prove that

Py 0] < max{p,;[o], poy[@. ]}, (1)

and if p, , [@,] < p,s[@ ] then
Pup [@] = Puy [@1] @)
At first we suppose that

max {p,,[¢], p,,[¢,]} =p <+o. Then for every
e>0andall r>r,(e)

M <a’ ((pa.ﬁ [‘P/} + S)B(r)) =

<a’! ((p + S)B(I’)),
and in view of the equality ¢ (z) = ¢, (z) - ¢, (z) We have
In M (r, 9) < InM(r, ¢) .

r r

M 9) oo (o4 0)8(r)

SinceaerLs,, hence it follows that p_,[¢]<p+&,
and in view of the arbitrariness of ¢ we obtain the
inequality p,,[e]<p, which is obvious when
p = +oo . Inequality (1) is proved.

If pos[@]<p.s[e] then (1) implies the
inequality p,.[o]<p,,[® ] In order to prove a

contrary inequality we write down
¢, (z)=9(z)/9,(z) and use results of value

distribution theory.
Let 7'(r,f) be Nevanlinna characteristic of the

function f meromorphic in the disk D,,
0< R<+o. Itis know [2, p. 45] that if £, and f,

yJj=12.

are  meromorphic  functions in D, and
f(2)=£(2) £ (2) then
T(r,f)<T(r,f,)+T(r.f,) and
T(r/f)=T(r,f)+o(1) asr T R.
Therefore,
T(r,e)<T(r,0)+T(r,1/9,) :’ PR Q)

=T (r,0)+T(r,9,)+o(l)
On the other hand, if the function f is analytic in
D, then [2,p.54]for 0 <7 <r, <R

T(r,f)<In" M, £) < 20T (1, 1)
r,—h
(4)
SinceR=R, =+, choosing r=r and

r, =(1+8)r, 8 >0, from (4) for the function ¢, we

2+8T((1+6)r,(p1),

obtain  7'(r,¢,) <In* M (r,¢,) <

whence in view of (3)
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S 1nM(r/(l+8),(p,)<
(2+8)(1+9) r/(1+39) a

T(r,(pl) - lnM(r, (p)+ lnM(r, (p2)+0(1)
r B r r

r — +oo and in view of the conditions o e L, we get

— 1 O{lnM(r/(l+8),(pl)J 3
) -

rhjﬂo B(r r/(1+3)

max {pa,B (0], oy [@: ]}
On the other hand,

— 1 a[lnM(r/(1+6),cp,)J:

rvs B(r) r/(1+38)

= 1 O{lnM(r/(1+6),cpl)]>

> B(r/(1+8)) r/(1+38) -

1 o lnM(rs(Pl) im B(l‘) _
( r jLToB((1+8)r)

> lim

EB0)
B(r)
= B((1+38)r)

= pa,ﬁ [(pl] llm

Thus
p((1+8)r)
B(r)
have [10]
340.

Pug[@1]< max{p,; [0].p.g [0, ]} lim

Since Bel, we
B[38]=limB((1+8)r)/p(r) 41 as

r—>+0

Therefore, in view of the arbitrariness of & we
obtain the inequality
Poplo]<max{p,,[0].p,s[0.]}, and  since
Po.p [(Pl] > Pop [‘Pz] ) we  get Pap [(Pl] = Pop [(P] )

i. e. (2) holds. Theorem 1is proved.

We remark that for example the functions
a(x)=Inx and B(x)=x for x>x, satisfy the
conditions of Theorem 1.

Now we consider the case O0< R, =R<wo.
Suppose that

imW, (x)e™ = +o, (5)

and for the study of the asymptotic behavior of
W, (x)e™ we put
o) [F]:= lim o(x)
B X—>+0 B(X/hfr (WF (x)eRx )) i

As in [2], the generalized order of an analytic in
D,, 0<R<+w, characteristic function ¢ of
probability law F we define by the formula

® [ oo T (I M (7 0))

R ()

Lemma 1. [3]. Letae L, Be L, and ¢ be of an
analytic in D,, R < +o0, characteristic function ¢ of
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probability law F , satisfying condition (5).
If B! (ca(x))/x >0
(x/B (co(x) )) =(I+o(1))a(x)as x—>+0 for
each ¢ € (0;+) then p [(p] o, R) [ F]

Using Lemma 1 we prove the next theorem.
Theorem 2. Let R, =R, = Re(0,+)and (5)

holds for F = F;, j =1;2. Suppose that the functions
ae L, and Be L, satisfy the conditions of Lemma 2
and oc(xo(1 (cB(x))) =(1+o(1))cB(x) as x— 4w
for each ce(0;+0). Then
KF*F]< max{oafl’fg[lﬂ],

and

of[B],  (6)

and if moreover o) [F] o [F] then
o) [F*F]=of[F] @)
Proof. Suppose that
max {pa s [o] ,pf p } p < +o0. Then
InM (r b, ) ((p +e)B (1/(R - r))) for every

e>0 andall r (r, (), R) and, thus,
InM(r,e)<InM(r,o)+
+In M (r, ¢,) <20 ((p+a)B(1/(R—r)))'

Since ae L, hence it follows that p\/)[@] <p+e,

and in view of the arbitrariness of ¢ we obtain the
mequalltyp [(p] < p, which is obvious when p = +o .

Thus, plf) [¢] < max{p%B [].p)) [(pz]} ,

Lemma 1 inequality (6) is true.
Further, choosing #n =r and r =r+(R-r)/2

from (4) for the function ¢, we have
R-r j
s (Pl

N 3r+R
T(r,g)<In"M(r,¢)< R, T(r+ 5

< 4R T("+R2_r,@1j

and by

i. e. in view of conditions a.e L; and Be L,

St

R . ~—°°(T(r"Pl))
Pus T (o) =l 5 e = <

—oa(InM(r,¢))

— 5B
Mk B(I/(R-r)) = Pop[¢1] <

O{R_r 211'(; r)/2 (r+(R—r)/2),(P1].
< MR B(1/(R-r-(R-r)/2))

B(2/(R-r))
B(1/(R-r))
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ol (ra)(R-r))
AR 1)

But by the definition of p{®)[7] we have
T(r,f)<o (pB(1/(R-r))) for every p>pl[T]
and all re[ro(p ,R). Therefore, since

X —>+o0, We

oc(xo(1 (cB(x))) <(1+0(1))eB(x) as
obtain
—a(T(re)/(R-r) _
R (l/(R _ ,-)) -

—a((V(R=r))e (BO/R-r)
Tk B(1/(R-r))
:ma(x“ (pB(x))):
x>+ B(x)

and in view of the arbitrariness of p the equality
plT]=p"[f] is true. Thus, (3) implies the

inequality p{{ [¢, ] < max{p/} [],p3 [0, ]}, that is
by Lemma 1 inequality (6) is proved. If
oM [R]<of[F] then by this lemma
mAE]=%ﬁMJ—pﬁkﬂ=wﬂiﬂ-TWWHHZB
proved.

We remark that for example the functions
a(x)=Inlnxandp(x)=1Inx for x> x, satisfy the
conditions of Theorem 2.

2. Connections in terms of convergence classes.
Let B be a positive continuously differentiable and

increasing to +wofunction on(0;R). If F is a
probability law and R=R, then
lim lln ! =R. Here we find conditions,
x—+0 X WF (x)
under which the correlations

R dx

I <40, j=1,2 (8)

x 1 1

Bl —-In——

{x Wi, (x)j

Imply for F = F, = F, the correlation

J'R dx < 40, 9)

“ B lln !
x  We(x)
At first we consider a convergence @ - class. Let
0<R<+o and Q(R) be a class of positive
unbounded functions @ on (0,R) such that the

derivative @' is positive continuously differentiable
and increasing to +won(0; R). For ® e Q(R), as in

[1,4,6], we say that an analytic in D, function ¢
belongs to a convergence @ -class if

fo'(r)InM(r,9)

w9
Finally, by ¥ (R) we denote a class of positive
continuously differentiable on (0,+«) functions v
such that v'(x) T R as x T +ew. In [4] the following

result is proved.
Lemma 2. Let 0<R<+wo and the function
®  Q(R)satisfies the conditions:

dr < +o

(10)

1) the  function o' (r)/@(r) is
nondecreasing on [, R);
2) @' (r)(R-r)>1 forall re[r;R);
3) (D’(r + 1/d)’(r)) <H®'(r) for all
reln;R), H, =const>0;
4) —cb”(r)<b(2r) <H, <+x for all
(@(r)
relrn;R);
R ’ 4
5) ) (r)zlnCD (r) dr < 400
no ©(r)

Suppose that ¢ is an analytic in D, characteristic

function on probability law F such that (5) holds.
Then in order that ¢ belongs to a convergence @ -class

it is necessary and in the case, when
In(1/W, (x)) = v(x) e V (R) itis sufficient that

g dx

I < 40, (11)

o @' lln 1
x  We(x)

We remark that the condition 5) in this lemma is
unnecessary. Indeed, by condition 4) we have

Ro'(F)Ind'(r R
E e

o' (r)|" fdm@(@g

o(r) | 5 @)
;If ZD r+c0nst—
R ( q)( ) r + const <
! DT )d t <

I—dr + const < +oo.

Theorem 3. Let 0< R<+0 and the function
® e Q(R) satisfy the condition 1)-4) of Lemma 2.

Let B be a positive continuously differentiable and
increasing to +w function on (0, R) such that B(x)

=@'(x)asx —>+oo. Suppose that R, = R < (0,+x),
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In(1/W, (x))=v;(x)eV(R)and (5) holds for
F =F,, j=1;2.Then (8) implies (9).

Proof. Since B(x)=®'(x)asx — -+ from (8)
for J=12we obtain (11) with W, (x) instead
W.(x), and by Lemma 2 for corresponding
characteristic function we obtain (10) with ¢,
instead¢. But InM(r,@)<InM(r,q,)+InM(r,¢,)-
Therefore, (10) holds and by Lemma 2 (11) holds.
Since B(x)=®'(x)asx —+wo (11) implies (9).
Theorem 3 is proved.

Consequence 1. Let 0 <p < +ocand F and F,be

probability laws such that R, = and
In(1/W;, (x))=v,;(x) eV (R). If
J.WF, (x)"*dx < +o0 then .[ Wi.r, (X)) dx < +o0.

Indeed, if we choose B(x)=®(x)=e"then the
function @ satisfies conditions 1) - 4) of Lemma 2

and  B(x)=®'(x) a  x—>+wo.  Since

B( n—1 j lp/x. Consequence 1 s
W, (x) W (x)

proved.

We remark that if R=+c0 and @(x)=e™then
condition (10) is equivalent to the condition

[e*"In M (r,0)dr <+. A generalization of this

]

correlation is the

T(“(lnM(r,@))/B(r))dr <+, where a e L and

Be L, and if this condition holds then [7]-[9] on
definition an entire function ¢ belongs to a

generalized convergence aff -class. Here we will
some modify this definition and will say that an
entire function ¢ belongs to a modified generalized

convergence of3 -class if

correlation

= ] M (r,o)
| Y ©, LBel). 12
r{ﬁ(r) [ r ]dr<+ (aclpel) -
The following analog of Lemma 2 is true.
Lemma 3. Let ael” and Be L’ be the

continuously differentiable functions, satisfying the
conditions:  a'(x)da=0 & X, <x >+,

xB'(x)/B(x)=h>0 for and

[ (a(x)/B(x

characteristic function of probability law F such that
In(1/W, (x)) = v(x) eV (+») Then in order that ¢

X=X,

))dx <+. Let ¢ be an entire
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belongs to the modified generalized convergence o8
-class it is necessary and sufficient that

To 1 1 0 Todr 13
ia(x)ﬁl[xanF(x)]dx<+ ; Bl(x)zlm (13)
Proof. In [5, p. 54-55] is proved that
W, (x)e” <2M (r,9) and

M(r,9) <1+ W, (+0)+ rJ‘OW W (x)e"dx for each

rel0,+0) and all  x>0. We put
u(r,e)= sup{ Wi (x)e" :x> O} and
I(r,9)= J': W (x)e dx. Then

Inp(r,¢) <(1+o))In M (r,¢)<(1+o0o))InI(r,¢),
F = 4o0. (14)
But

I(r,¢)= IOWF (x) exp{x(r +e” )} exp{—xe”}

dx < p(r +e",(p)e’
whence

oc((ln[(r,(p))/r) < oc((ln u(r+e",(p))/r + 1) ,

and, since aoe I’ and B e L',

a((n(r.0))/r) o((Inu(r +e.0))/r)
B(r) B(r+e”)

<(1+o(1))

Hence and from (14) it follows that condition
(12) holds if and only if

*f“((ln n(r.9))/r)
; B(r)

dr < +o

(15)

As in [4], let v(r,¢) be central point of the
maximum p(r,e) of the integrand. Then [4]
v(r, @) — +0 as r — +o0 and
lnp(r,(p):lnp(rb,(p)+'|‘r:v(x,(p)dx

Hence

v(r,e)(r—ry)=Inu(r,e)-
—lnu(r;),(p)zJ‘:/zv(x,(p)dXZV(r/Z,(p)r/Z

and, since oo e I and p e L, condition (15) holds if
and only if

j —dr < 400, (16)
We remark that |f In(1/W, (x)) = v(x) € V (R)
then for every re(0,R) the function

InW, (x)+m =—v(x)+m has unique point of the
maximum  x = v(r,¢)which is increasing and
continuous on(0, R), and



Inpopmaruka, 06unCIIOBAIbHA TEXHIKA Ta ABTOMATH3aLlisI

Inp(r,¢) = max{InW, (x)+rx:x20}=

(17
:anF(v(r,(p))+rv(r,(p) (17)
Since _[: dx/B(x) < +o0, We have
(x) :jwdr/ﬁ (r)4 0as x -+ and
I I I‘(p dB1 )
= ( r,0))B, (r IBI 0))dv(r)

and, since (v (r ¢))[31( )>O, hence it follows
that condition (16) is equwalent to the condition

.[oc v(r,9))B, (r)dv(r) < +o. (18)
From @an it follows that
Wi (v(r,0))+rv(r,e)=0 for all r enough large.
1 1
Therefore, r > In and, thus,
v(r,e) W, (v (r, (p))
[ (v(re)pi (r)dv(r) < [ a'(v(r.0))B

1 1
In dv(r) <+
(o) W )j e
provided condition ( 3) hoI The sufficiency of
(13) is proved.
Now we prove its necessity.
Since x =v(r,e) is a solution of the equation -

v(x)+r=0, we have r=v'(v(r,¢)) and from (18)

v(r0))B (V' (v(r.e

J. o (x)B, (V'(x))dx < +o0
Xo

From a theorem proved in [9] it follows that if
a(x) and p(x) are continuous functions on
(0, +0), o< A<a(x)<B<+o, p(x)dpu=0as
x — 400, and for a positive function f on (A4, B)
the function " is convex on (A4, B), then

_:[H(X)f(é;fa(t)dtjdx < [p{
, ¥ < 400.(20)

We  choose, p(x)=o'(x), a(x)=V(x),
f(x)=p,(x) and shown that the function B'”js
convex for some 2 > 1, Indeed,

W (x)) "= L2 (x x)By(x)-
(07 )= L7 ) . () )

obtain J'

ro

))) dv(r)<+o,i.e.

(19)

2o (x))z] ,

| T (e

and in view of the condition xp'(x)/p(x)>h>0 for
X 2 X,

) drfp(r) = B (x) ] drfB(r) 2 50 () B x

)2h>0
Therefore, choosing p > 1 such that A _p-l >0,
p
we get the inequality (ﬁ{/”(x)) >0 for x>x, thatis
the function B! (x) is convex and in view of (20)

T ’ 1 T !
Ja (x)B, [;JV (t)dtj
0 0 (21)
dxg( L j [ (x)py (v'(x))dx < 40
P Since
TV,(t)dl‘ =1In ! In L (1+o(1))In ]
% W (x) W (xo)
, X —> 400
and by condition Be I’ the relation

B (x(1+0(1) = (1+0(1))B, (x) @ X —>+0 holds,
(21) implies (13). The proof of Lemma 3 is
completed.

Theorem 4. Let the functions o and B satisfy the

conditions of Lemma 3. Suppose that R, =-+o,

In(1/W, (x)) =v(x) eV (+=) and
ln(l/WF/_ (x)) =v,(x) eV (+0) for j=1;2
If
T, 1 1
[o'(x), [; In W—(x)] dx <+ (22)
then ! I
o X 1 n 1 < 400
;[ot ( )Bl (xl W, (x)] dx (23)
Proof. In view of (22) by Lemma 3 the

corresponding characteristic functions ¢, belong to
the modified generalized convergence «of -class.
Since InM(r,9)<InM(r,¢)+InM(r,9,) and
a e ', we have

a((lnM (r,o )/r) <
<a(2max{(lnM re,) /r (In M (r,¢,) )/r)})s
sKmaX{ ((lnM o )/r), ((In M (r,q,))/r) }

< K(a((lnM(r, o, ))/r) +o((In M (r,o, ))/r)) < 400,
whence it follows that ¢ belongs to the modified
generalized convergence of-class and, thus, by

Lemma 3 (23) holds. Theorem 4 is proved.
Conclusions. Established connections between
the decrease of function W, and the decrease of

functions W, and W, in terms of generalized orders
and convergence classes.
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Myasisa O.M., Illepemera M.M. KOMIIO3U LIS HMOBIPHICHUX 3AKOHIB
Heegio emna i necnaona, nenepepsna 3niea Ha nPOMINCKy (-0, +w) ynxyin F Hazusaemvcs MOSIPHICHUM
saxkonom, sxwo lim F(x)=1 i lim F(x)=0, a komnosuyis 060x umosipHicHux 3axonie Iy and F, susnauaemocs

pisuicmio F(s)=(F1#))(s):= j F, (x-8)dFy(x). Axwo ona x>0 mu noxnademo We(X)=1-F(X)+ +F(-x), mooi

We(X)¥0 npu x—+o0. ¥ cmammi 0ocniosrcero 36’130k misic cnadanuam Qynkyii We ¢, - I cnadanmnam ynxyii
W, and W . ) 6 mepminax ysazanshenux nopaokie ma xnacie sbiscnocmi. [ns yvoeo uepes L nosnauumo
KIAC HenepepeHux Hesio emHux Ha (-00,+w) Gyuryiil o maxux, wo a(x)=u%g)=0 oua x<X¢ i a(X) T+ npu
Xo<X—+00, Kaoweyms, wo a.eL’, sxwo a el i a((1+0(1))X)=(1+o(1))ax) npu x—+w. Hapewmi, a €L, saxwyo
a€l i a(cx)=(1+o(l))ox) npu x—>+w o 6yob-axozo @ikcosanozo c¢e(0,+00), mobmo o € noginbLHO
spocmaiova @yuxyis. Hoxnaswu Re= lim ((1/X)IN(L/Ws(x)), 0sa sunaoku Rg=+co i Re<+oco posensdaromvcs

X—>+0

oxpemo. Jlns Rp=+co esedeno maky xapaxmepucmuky o ,4[F/= 1lim a@)/B((1/x)-In(1/We(x))) i dosedeno,

wo sxwo aelgi fe L mo o o s[F1 4, /smax{® ,s[F1/ © . s[F2/} i, kpim moeo, saxwo o ,p[F2/< o ,s[F1/,
modi ® ,g[F1#F2 /= o 4[F1] Axwo O0<Rg=R<+wo i Iim We(X)e™=+a, mu noxrademo u)ffg [F/=lim
a®)/BEIn" Wex)€*).  Hdosedeno, wo  saxwo R =R, =Re(0+), aely, Pels, alxa
Yep)=(1+o(1))cB(x)) i a@/p(ca(x)=(1+0o(1))a(x) npu x—>+% ona Gydv-sKkozo ce(0;+00), mooi o)
[Fo 2 /smax /o) [F1], o) [F2]} i kpise moeo, sixugo o [FoJ< offf [Fil moodi o) [F1#F2/= o) [F1/.

36’30k midic cnadanusm Gyuryii Wy . (x) i cnadanusm gynxyia W, (x) i W, (x) eusueno maxodic y

mepminax kaacie 30ixcnocmi. 3a nesnux ymoe na @yukyii o, i W r, (x) Oosedeno, nanpuriad, wjo KO
Rp=+o0 i f o (x)ﬂl((l/x)-ln(I/WFj (x)))dx<+ow ona j=1,2, de ﬂ16()=fdr 1B(r), mo I o' ()P1((1/x)In(1/W .,
(x)))dx<+oo.

Kniouoei cnosa: iimogipHichull 3aK0oH, KOMHO3UYIS UMOBIPHICHUX 3AKOHIB, Y3a2aibHeHi NOpsoKU, Kiacu
30iicHocmi, cnadanus QyHKyii.
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